| http://www.alemegel.net |
|
| MATEMATİKÇİLER | |
| | Yazar | Mesaj |
---|
TÜRK Moderatör
Mesaj Sayısı : 165 Yaş : 31 NeRdEn : GoP HoBi : futbol Kayıt tarihi : 26/12/07
| Konu: MATEMATİKÇİLER 24.01.08 14:44 | |
| Baire (1874 - 1932)Rene Baire, 1874 yılında Paris'te doğdu. Ecole Normal Superieure'de öğrenimini tamamladı. Daha sonra Dijon Fen Fakültesinin matematik analiz derslerini okuttu. Kendisi gibi Fransız matematikçileri olan Henri Poincare, Emil Borel ve Henri Lebesgue ile beraber gerçel değişkenli fonksiyonlar üzerinde yeni çığırlar açtı. Gerçel analiz üzerinde çok değerli kitaplar yazdı. Baire sınıfları oldukça Ünlüdür. 1932 yılında Chaber'de öldü.
Bernoulli'ler "Bu adamlar şüphesiz birçok şeyler başarmışlar ve seçtikleri hedefe en iyi bir biçimde varmışlardır" diyen Jean Bernoulli, Bernoulli ailesinin neler yaptıklarını belirtmek istemektedir. Üstün zekalı soylarının geçmişleri uzun uzun genetikçiler tarafından incelenmiştir. Son olarak, Mendel kanunlarıyla kalıtsal özelliklerin sonuçları matematiksel ifadelere bağlanmıştır. Yine bu incelemelere göre, üstün zekalı kimseler istenerek veya bilinmeyen terslikler yüzünden yardım görmezse onların da yok olup gitmeleri çok kolaydır. Buna en iyi örnekler matematik tarihinde görülür. Bunlar da Bernoulli ailesidir. Üç veya dört nesilde sekiz on tane üstün zekalı matematikçi veren Bernoulli ailesi incelemeye değer. Yalnız bir noktayı daha belirtmede yarar vardır. Evde piyano yoksa, bu evden Chopen veya Motzart'ın çıkması beklenemez. Bu nedenle, dahi kimselerin ortam bulup filizlerini sürmesi koşulu ilk planda gelir. Yoksa yeşeremez. Matematik dışında belki de bambaşka bir insan olurlar. Bernoulli soyunun zamanımıza kadar gelen döllerinin hemen hemen yarısı bu biçimde üstün zekalı kimseler olarak çıkmışlardır. Yine matematikçi Bernoulli'lerin torunlarının tam yüz yirmi tanesi atıldıkları alanlarda, büyük izler bırakmışlar ve çok başarılı olmuşlardır. İçlerinden birçoğu hukukta, bilginlikte, edebiyatta, serbest mesleklerde, idari alanlarda ve görevlerde ve sanatta gerçek bir üstünlük göstermişlerdir. Bernoulli soyunun bireylerinden hiç birinin başarısız olduğu görülmemiştir. Matematik alanında daha çok Bernoulli soyunun ikinci ve üçüncü kuşakta sivrildiğini görmekteyiz. Bunların çoğu matematik mesleğini kendileri seçmemelerine karşın, matematik onları çekmiş ve kendisine hizmet ettirmiştir. Bernoulli ailesi, diferansiyel ve integral hesabın gelişmesinde, uygulanmaya konulmasında ve tüm Avrupa'ya yayılmasında en önde yer almışlardır. Gerçekten, Bernoulli'ler ile Euler diğerlerini bastırarak integral ve türevi çok ileriye götürmüşlerdir. Gerek bu ailenin kalabalık oluşu gerekse yaptıkları çalışmaların çok sayıda olması bu aileyi ve bu ailenin tüm fertlerinin tanıtılmasını olanaksız kılar. Bernoulli'ler, Saint-Barthelemy toplu öldürmelerinde olduğu gibi, Hügnoların Katolikler tarafından toplu öldürmelerinden kurtulmak için 1583 yılında Anvers'ten kaçan bir ailenin soyudur. Hatırlanacağı üzere, Fransa'da IX. Charles zamanında 24 Ağustos 1572 günü Protestanlar toplu olarak öldürülmüştü. Bernoulli ailesi ilk kez Frankfurt'a Sığındı. Daha sonra İsviçre'ye gidip orada Bale kentine yerleşti. Bernoulli soyunun kurucusu, Bale'in en eski ailelerinden biri ile birleşip büyük bir tüccar oldu. Eski Nicolas da, büyük babası ve dedesi gibi büyük bir tüccar oldu. Tüm bu adamlar hep tüccar kızlarıyla evlendiler ve dededen başka hepsi de zengin oldular. Yalnız bir tek Bernoulli bu geleneği doktor olarak değiştirdi. Bu tüccar ailede kuşaklar boyu gizli kalmış olan matematik deha birden ortaya çıktı. Şimdi, bu aileden sekiz matematikçinin önemli ilmi çalışmalarını sırasıyla kısaca verelim. 1. Jacques, Leibniz tarafından ortaya atılan diferansiyel ve integral hesabın şeklini inceledi. 1687 yılından ölümü olan 1705 yılına kadar Bale'de matematik profesörlüğü yaptı. 1. Jacques, Newton ve Leibniz'in bıraktığı bu hesabı daha ileri götürerek, onu zor ve önemli uygulamalarına yönlendirenlerin başında gelir. Analitik geometri, olasılıklar kuramı ve değişimler hesabına ait buluşları çok değerlidir.Bu değişimlerle ilgili problemlerin üzerinde daha sonra, Euler, Lagrange ve Hamilton da durmuştur. Fermat'ın "minimum zaman" problemi bu değişimle çözülebilen türlerden biridir. Aslında, değişim probleminin doğuşu çok eskidir. Söylentiye göre, Kartaca şehri kurulduğu zaman adam başına bir sabanın bir günde sürebileceği kadar alanda toprak verilmişti. Adamın bir günde sürebileceği çizginin uzunluğu bilindiğine göre en büyük alanı elde etmek için sabanın izinin şekli ne olmalıdır? Ya da, matematik bir dille söylersek, çevre uzunlukları aynı olan şekillerden maksimum alanlısı hangisidir? Yanıtı hemen çemberle çevrili bir dairedir. Bu da, Analizde ünlü maksimum ve minimum problemidir.İşte, 1. Jacques, bu problemi çözdü ve genelleştirdi. Sikloidin en çabuk iniş eğrisi olduğu, 1. Jacques ve 1. Jean kardeşler tarafından 1697 yılında, başka bilginlerle hemen hemen aynı zamanda bulundu. Birçok problem, bu maksimum ve minimum yöntemi ile kolayca çözülebilir. 1. Jacques'in ölümünden sonra 1713 yılında olasılıklar kuramında "Ars Conjectandi" adlı büyük eseri yayınlandı. 1. Jacques Bernoulli, diferansiyel ve integeral hesaba ait birçok çalışmasında çok ileri sonuçlar bulmuştur. Libniz'in yaptığı çalışmalar üzerinde devam ederek, zincir eğrisi problemi ile uğraşmıştır. Bu problem, bugün için geçerli olan asma köprüler, telefon telleri ve yüksek gerilim telleri problemidir. O devirde yeni ve zor olan bu problem, şimdi oldukça kolay ve çok uygulaması olan bir mekanik problemidir. 1. Jacques ile 1. Jean kardeşler beraber çalışsalar da, bu kardeşlerin arası her zaman da iyi olmamıştır. Özellikle 1. Jean çok kavgacıydı. Bernoulli'ler matematiği çok ciddiye alıyor ve bu yüzden aralarında sürekli tartışmalar oluyordu. Bu konuda yazılan mektupları, kaba küfürlerle doludur. Ôzellikle 1. Jean, kardeşinin fikirlerini ve düşüncelerini çalmakla kalmadı, oğlu ile beraber Fransız ilimler Akademisinin düzenlediği yarışma sınavına katıldı. Birinci gelen ve yarışmadaki ödülü alan kendi oğlunu bile evinden kovdu. Ayrıca, 1. Jacques'in mistik yönüyle biraz da davranış bozuklukları vardı. Bu ailede bu mistik davranış bozukluğu daha sonraki Bernoulli'lerde de biraz görülür. 1. Jacques'in bir saplantısı da, üzerinde çok çalıştığı ve birçok yönlerini keşfettiği, geometrik dönüşümlerin çoğu ile yine kendine benzer şekle giren logaritmik ya da eşit açılı bir yaya hayran kalmıştı. Mezarına bile bu yayın resminin çizilmesini ve "Aynı kalarak değişirim" yazısının yazılmasını vasiyet etti. 1705 yılında öldü. 1. Jacques'in kardeşi olan 1. Jean'ın ilk mesleği doktorluktu. Kendisine matematik öğreten kardeşi 1. Jacques'le sürekli tartışır ve kavga ederdi. Leibniz ve Euler'e tapar fakat rakibi olduğundan Newton'dan nefret ederdi. Eski Nicolas, 1. Jacques'in ilahiyatçı olmasını istiyordu. Fakat o bu mesleği istemedi. Babası, 1. Jean'ı da aile mesleğine sokmak için çok uğraştı. O da ağabeyine uyarak isyan etti. Soydan gelen matematik yeteneğini farketmeden tıbba çalıştı. On sekiz yaşında doktor oldu. Fakat, kısa zamanda hatasını anlayıp kendisini matematik çalışmalarına verdi. İlk kez, 1695 yılında Groningen'e matematik profesörü oldu. 1705 yılında kardeşi 1. Jacques ölünce onun yerine geçti. l. Jean, matematikte kardeşinden daha çok eser verdi. Özellikle, diferansiyel ve integral hesabın Avrupa'ya yayılmasında çok hizmet etti. Matematikten başka, fizik, kimya ve astronomi üzerine çalışmaları da vardır. Uygulamalı ilimlerde optiğe çok çalıştı. Gelgit olayları kuramı ve gemilerin yelkenlerinin matematik incelemesi ile uğraştı. Mekanikte sonsuz küçük yer değiştirmeler kuralını ifade etti. Matematik tarihinde çok az görülen bir fizik ve zihni, güce sahip bir adamdı. Ölümünden birkaç gün öncesine kadar matematik çalışmaları gösterdi. 1748 yılında seksen yaşında öldü. 1. Nicolas'ta, kardeşleri gibi matematikçi yaratılmıştı. O da, diğer Bernoulli'ler gibi hayata yanlış yoldan başladı. On altı yaşında Bale Üniversitesinden felsefe doktoru ünvanını ve yirmi yaşında hukuktan en yüksek rütbeyi aldı. Saint Petersburg Akademisine matematik okutmadan önce, Berne'de hukuk profesörü oldu. 1716 yılında öldüğünde, ünü çok büyüktü. Bu nedenle, imparatoriçe Katerina devlet hesabına bir cenaze töreni yaptırdı. Bernoulli'lerin bu kalıtsal özelliği, ikinci kuşaklarda da garip bir biçimde görülür. 1. Jean'ın ikinci oğlu Daniel (1700- 1782), iş alemine sokulmak, istendi. Fakat O, kendisinin doktorluğa daha yatkın olduğunu düşündü. Matematikçi oluncaya kadar da doktorluk yaptı. On altı yaşından itibaren, kendisinden beş yaş büyük olan kardeşi III. Nicolas'tan (1695 - 1726) matematik dersleri almaya başladı. Daniel ve büyük Euler çok içten dosttular. Bazen de aralarında arkadaşça yarışıyorlardı. Euler gibi Daniel Bernoulli de Paris İlimler Akademisi ödülünü tam on kez kazandı. Bazen de ödül birkaç kişi arasında bölünüyordu. Daniel'in çok sayıda eseri vardır. Bu eserlerinden en ünlüsü, sıvılar dinamiğine aittir. O, bunları yalnız enerjinin korunması ilkesinden hareket ederek bulmuştur. Bugün, sıvıların hareketleriyle doğrudan doğruya veya uygulamalı alanda uğraşan herkes, Daniel'in adını bilir. Daniel, yirmi beş yaşındayken Saint Petersburg'a 1725 yılında matematik profesörü olarak atandı. Fakat, oradaki barbar yaşantıdan o kadar iğrendi ki, sekiz yıl sonra ilk fırsatta Bale'ye döndü. Anatomi, botanik ve fizik dersleri okuttu. Matematikte çok eser verdi. Diferansiyel ve integral hesap, olasılıklar kuramı, titreşen teller kuramı, gazların kinetiği kuramı ve uygulamalı matematiğin birçok problemi üzerinde çalıştı. Daha ileri, Daniel Bernoulli'ye, fiziğin kurucusu denilmiştir. Bazı Bernoulli'ler gibi Daniel de dini konular ve felsefeye eğilmiştir. Bernoulli'lerin ikinci kuşaktan olan üçüncü matematikçi III. Nicolas ile, Daniel'in kardeşi II. Jean da hayata yine yanlış yoldan başladı. Asıl mesleğine kalıtsal özellikten veya kardeşinin etkisi ile girdi. Önce hukuk öğrenimi gören III. Nicolas, matematik kürsüsünde babasının yerine geçinceye kadar Bale' de hukuk dersleri verdi. Fiziğe çok çalıştı. Elde ettiği sonuçlar, Paris İlimler Akademisi ödülünü üç kez kazandıracak kadar parlaktı. II. Jean'ın oğlu III. Jean da, ailesinin geleneğine uyarak başlangıçta o da yanlış yola saptı. O da babası gibi işe hukukla başladı. On dokuz yaşında asıl işini buldu. Berlin'de, Prusya Kralının astronomu olarak atandı. Astronomi, coğrafya ve matematikle uğraştı. II. Jean'ın diğer oğlu II. Jacques'te (1759 -1789), atalarının hatasını işledi. İlk olarak hukuk öğrenimi gördü. Yirmi bir yaşında deneysel fizik öğrenmeye başladı. Bu sıralarda matematikle de uğraştı. Saint Petersburg Akademisi matematik ve fizik kısmına yarım gün üyesi oldu. Bir kaza sonucu boğuldu. Ümitle dolu hayatı otuz yaşında 1789 yılında söndü. II. Jacques'in matematiğe neler yapabileceği bu nedenle bilinmiyor. Aynı zamanda Euler'in torunlarından biri ile evliydi. Matematikçi Bernouli'lerin ailesinin bu öz öyküleri II. Jacquesle de bitmez. Bu soyun yetenekleri, bitmek ve tükenmekten çok uzaktı. Bernoulli'ler hakkında birçok öyküler ve söylentiler de vardır. Şüphesiz, bu kadar geniş hizmetler veren ailenin bu kadar iz bırakacağı da doğaldır. Bugün bile Bernoulli'lerin soy ağacının devamı araştırılırsa, yine birçok matematikçinin bulunabileceği şüphe götürmez. Bolzano (1781 - 1848)
[size=9] Bernhard Bolzano, Çekoslovakya'nın Prag kentinde 5 Ekim 1781 günü doğdu. Babası bir İtalyan göçmeni ve küçük bir esnaftı. Annesi de, Prag' da madeni eşya ile ilgilenen bir ailenin kızıydı. Bolzano, Prag Üniversitesinde, felsefe, fizik, matematik ve ilahiyat çalıştı. 1807 yılında Prag'da aynı üniversiteye din ve felsefe profesörü olarak atandı. 1816 yılına kadar bu üniversitede başarılı dersler verdi. 1816 yılında, Hıristiyan kilisesince benimsenen inanç, duygu ve düşünceye ters düştüğü için, bu inançlarından dolayı suçlandı. 1820 yılında Avusturya hükümeti Bolzano'nun bu yıkıcı ve kendileri için kırıcı olan konuşmalarından dolayı onu ülkeden uzaklaştırdı. Bolzano, İtalyan asıllı bir Çek filozofuydu. Aynı zamanda iyi bir mantıkçı ve çok iyi de bir matematikçiydi. Bolzano, 1820 yılında daha çok akılcılıkla suçlandı. Onun matematiğe dayalı bir felsefesi ve düşüncesi vardı. Bu nedenle Kant'ın idealizmine karşı çıktı. Kendisi aslında bir Katolik papazıydı. 1805 yılından sonra, Prag Üniversitesinde din felsefesi okuttu. Matematikte, sonsuzluk ve sonsuz küçükler hesabı üzerinde çalıştı. "Sonsuzluk üzerine Paradokslar" adlı kitabı 1851 yılında yayınlandı. Noktasal kümeler üzerine de çalışmaları olmuştur. Bolzano'nun en acıklı yılları, 1819 ile 1825 yılları arasına rastlar. Prag Üniversitesince, tam yedi yıl ders vermemek ve yayın yapmamak üzere cezalandırılır. Bu üniversitece profesörlüğü de elinden alınır. Tüm bu baskılara karşı onun yüksek kafası hiç durmadan çalışmıştır. Analizde, geometride, mantıkta, felsefede ve din üzerinde çok sayıda yayınını gerçekleştirmiştir. Bugün, analizde bildiğimiz ünlü Bolzano-Weierstrass teoremini ilk kez "Fonksiyonlar" adlı kitabında o kullandı. Fakat, teoremin ispatını daha önceki çalışmalarında yaptığını ve kaynak olarakta bu çalışmasını verir. Ancak, sözü edilen bu çalışma ve kaynak bugüne kadar bulunamamıştır. Çok kullanılan ve kendisinin de çok kullandığı bir teoremin ispatının Bolzano tarafından verilmiş olması olasılığı çok fazladır. Zaten bu teoreminin ispatı verilmeseydi Bolzano tarafından bu kadar çok kullanılmazdı. Sonraki yıllarda bu teoremin ispatı tam olarak Weierstrass tarafından verilmiştir. Bu nedenle bu teorem analizde Bolzano - Weierstrass teoremi adıyla bilinir. Bolzano'nun temel çalışmaları, sonsuzlar paradoksu üzerinedir. Bolzano'ya yayın yapma yasağı konduğu için, yaşamı sürecinde bu eserlerini ne yazık ki yayınlayamamıştır. "Sonsuzlar Paradoksları" adlı çalışması ancak onun ölümünden iki yıl sonra 1850 yılında basılmıştır. Bu çalışması, sonsuz terimli serilerin birçok özelliğini içerir. Diğer birçok matematikçide olduğu gibi yaşam sürecinde çok hırpalanan, şanssızlıklar ve baskılarla horlanan Bolzano, 18 Aralık 1848 günü yine Prag'da öldü. Bugün hala, sınırlı ve sonsuz her dizinin en az bir yığılma noktası vardır teoremiyle anılır. Bolzano, çalışmalarının birçoğu ile Weierstrass'a benzer. Çalışmalarının birçoğu zaten bu yöndedir. Çok sayıda ilginç ve kullanışlı fonksiyon örnekleri vardır. Bolzano' nun kümeler kuramındaki çalışmaları da Cantor'a benzer. Matematikteki özlü çalışmaları, sonsuzun paradoksu üzerine yoğunlaşır. Bu buluşlarının tümü ölümünden sonra yayınlanmıştır. Kendisi yayınlandığını görememiştir. Hiç bir yerde türevlenemeyip salınım yapan, x=0 noktasında sürekli olan fonksiyon örnekleri buldu ve bu fonksiyonların grafiklerini çizdi. Fakat, Bolzano'nun ispatı tam değildi. Ancak, bu soruya tam ve noksansız yanıtı veren fonksiyonu yine Weierstrass buldu.
| |
| | | TÜRK Moderatör
Mesaj Sayısı : 165 Yaş : 31 NeRdEn : GoP HoBi : futbol Kayıt tarihi : 26/12/07
| Konu: Geri: MATEMATİKÇİLER 24.01.08 14:46 | |
| Pisagor (M.Ö. 596 - 500) Samos'lu Pisagor'un, Milattan önce 596 yıllarında doğduğu tahmin ediliyor. Doğumu gibi ölüm tarihi de kesin değildir. Bugünkü adıyla bilinen Sisam Adasında 596 veya 582 yılında doğmuştur. Hayatı hakkında çok az bilgiler vardır. Bu bilgilerin birçoğu da kulaktan kulağa söylentiler biçiminde gelmiştir. Fakat, önceleri doğduğu yer olan Sisam Adasında okuduğu, daha sonraları Mısır ve Babil'e giderek oralarda bilgilerini ilerlettiği ve ülkesine geri dönerek dersler verdiği söylenir. Kendisinden önceki bilgilerin tümünü öğrenmiş ve derlemiştir. Kendisi, bir Yunan filozofu ve matematikçisidir. Ülkesinde hüküm süren politik baskılardan kaçarak, İtalya'nın güneyindeki Kroton şehrine gelmiş ve ünlü okulunu burada açarak şöhrete kavuşmuştur. Yarı söylentilere göre felsefe okulunun kurucusudur. Bu okul aynı zamanda dini bir topluluk ve o zamanın politikasına oldukça egemendir. Yine söylentilere göre, Pisagor'un matematik, fizik, astronomi, felsefe ve müzikte getirmek istediği yenilik, buluşlar ve ışıkları hazmedemeyen bir takım siyaset ve din yobazları halkı Pisagor'a karşı ayaklandırarak okulunu ateşe vermişler, Pisagor ve öğrencileri bu okulun içinde alevler arasında M.Ö. 500 yıllarında ölmüşlerdir. Bu nedenle Pisagor ve yaptıkları hakkında az bilgiler bize kadar gelmiştir. Pisagor'un ve öğrencilerinin yaptıklarının birçoğu bu alevler arasında yok olup gitmiştir. Pisagor, M.Ö. altıncı yüzyılda, dünyanın güneş etrafında hareket ettiğini ileri sürdüğü zaman oldukça sert olan bir hareketle karşılaşmıştır. O tarihlerde kağıt olmadığı için, bu buluşlarını nasıl elde edildiği, yine bu devirlerdeki bilgilerin hangisinin Pisagor'a ait olduğu kesin olarak bilinmemektedir. Hatta, okuldaki öğretim araçlarının masa üzerindeki ıslak kum olduğu söylenir. Bu koşullar altındaki ilmi gerçeklerin tümü o zaman yazıya geçmediği için, birçoğu da zamanla kaybolup gitmiştir. Bu nedenle, Pisagor'un okulu ve öğrencileri ile birlikte yanmalarından, eser bırakıp bırakmadığı da kesin olarak belli değildir. Geometride, aksiyomlar ve postülatlar her şeyden önce gelmelidir. Sonuçlar bu aksiyom ve postülatlardan yararlanılarak elde edilmelidir düşüncesini ilk bulan ve ilk uygulayan matematikçi Pisagor'dur. Matematiğe aksiyomatik düşünceyi ve ispat fikrini getiren yine Pisagor'dur. Çarpma cetvelinin bulunuşu ve geometriye uygulanması, yine Pisagor tarafından yapıldığı söylenir. En önemli buluşlarından biri de, doğadaki her şeyin matematiksel olarak açıklanması ve yorumlanması düşüncesidir. Yaşayış ve inanışı, ilimle açıklama ve yorumlamayı o getirmiştir. Müzik üzerine de çalışmaları vardır. Müzik tonlarının, telin uzunluğunun oranlarına bağlı olduğunu keşfetmiş ve bunun tüm sayılara yorumlamasını düşünmüştür. Bir yerde bugünkü gerçel ekseni söylemeden düşünmüştür. Bu da, bugünkü kullandığımız gerçel eksenin sayı sisteminde kullanılmasından başka bir şey değildir. Fakat, eski Yunan matematikçileri gerçel sayıları bilmiyorlardı. O zamanlar, rasyonel sayıları uzunlukları ölçmek için kullanıyorlardı. Bunun için belli bir birim alıyorlar ve bu birime oranlayarak iki nokta arasındaki uzunluğu ölçüyorlardı. Rasyonel sayılarla ölçülemeyen uzunluğun keşfi 2600 yıl önce Yunan matematikçileri tarafından olmuştur. Bu sonuçta, halen değerini koruyan ve koruyacak olan ünlü Pisagor teoremine dayanır. Pisagor teoremi, matematikteki en büyük buluşlardan biridir. Hele zamanımızdan 2600 yıl önce bulunduğu göz önüne alınırsa, bundan daha büyük bir buluş düşünülemez. Pisagor'un adını 2600 yıldır andıran, onu ünlü yapan ve insanlığın varolduğu sürece de sonsuza kadar da andıracak meşhur teoremi şudur: Bir dik üçgende, dik kenarlar üzerine kurulan karelerin alanlarının toplamı, hipotenüs üzerine kurulan karenin alanına eşittir.
[size=9]Pisagor teoremi, rasyonel sayılarla ölçülemeyen uzunluğun da varolduğunu gösterir. Örneğin, yukarıdaki şekilde olduğu gibi, dik kenarları birer birim olan dik üçgeni göz önüne alalım. Geometrik olarak, bu özel hal için, Pisagor teoremi gerçeklenir. Yani, büyük karenin alanı, dik kenarlar üzerine kurulan karelerin alanları toplamıdır. Diğer bir deyimle, x2=2 olur. Bu denklemin kökü de rasyonel olmayan karekök 2 uzunluğudur. Yunan matematikçileri gerçel sayılan bilmiyorlardı. Üstün zekalı Eudoxos tarafından bulunan oranlama yöntemini kullanıyorlardı. Aslında, gerçel sayıların oluşumu kavramı bir ya da birçok insanın buluşu değildir. Rasyonel sayıların günlük hayatta kullanılması sırasında kendi kendine gelişmiştir. On tabanına göre sayıların sayılması ve yazılması, büyük bir olasılıkla iki eldeki parmakların sayılmasından doğmuştur. Şu sırada bile ilkel yaşam sürdüren bazı kabilelerde buna benzer sayma yöntemi vardır. On tabanına göre sayıların yazılması ve okunması, Avrupa'ya Crusades'ten sonra Arap dünyasından gelmiştir. Bunu Araplar Hintlilerden, Hintliler de Helen medeniyetinden aldılar. Yunan'lı astronomlar bu sayı sistemini, M.Ö. 1500 yıllarından beri kullanan, Babil'lilerden almışlardır. "Evrenin hakimi sayıdır. Sayılar evreni yönetiyor" sözleri de Pisagor'a aittir. Pisagor, Archimedes'ten oldukça farklıdır. Pisagor hem mistik ve hem de matematikçidir. Mistik tarafları çoktur. Bunlar, efsaneleşmiş bir biçimde destan olarak anlatılmış, evren hakkında bu günkü gerçeklere uymayan düşünceler de ileri sürmüştür. Bunları bir tarafa bırakırsak, yine yaşadığı çağa göre matematikçi yönü çok ağır basar. Pisagor, Mısır'da ve Babil'de çok gezdi. Rahiplerden ilim öğrendi. Çok tanrılı olan o zamanın dini inançlarını benimsedi. Yaşadığı çağı ve aldığı rahip eğitimi göz önüne alınırsa, bunda yadırganacak pek bir şey de yoktur. Oldukça doğaldır. Matematiğe ispat fikrini getiren Pisagor için, sosyal ve şahsi yaşantısı bu kadar eleştiriye değmez. Yalnız, Pisagor ve bazı Yunan filozofları, örneğin, Euclides, Eflatun ve Aristo gibi alimleri, yaşadığı devirlerde, bugün için bilinen ilmi gerçeklerde hataya düşmüşlerdir. Bu filozofların felsefeleri, modern matematiğin kurucusu Descartes (1596-1650) ve Newton (1564-1642) kadar, modern fiziğin kurucusu Galile (1564-1642) ve modern kimyanın kurucusu olan Lavoisier (1743-1794) zamanına kadar iki bin yıllık bir gecikmeye neden olmuşlardır. Eğer Yunan'lılar Euclides, Eflatun ve Aristo yerine Archimedes'i izlemiş olsalardı, Descartes, Newton, Galile ve Lavoisier'in kurdukları modern ilme iki bin yıl önce ulaşır ve bugün içinde bulunduğumuz medeniyete iki bin yıl önce varılırdı. Yani, Archimedes'le Newton, Galile ve Lavoisier arasında tam iki bin yıllık ilmi boşluk vardır. Bu boşlukta kolay kolay doldurulamaz. Bu nedenle, Yunan'lıların medeniyetin ilerlemesine iki bin yıllık bir gecikmeye sebep oldukları bir gerçektir. Avrupa'da uzun yıllar egemen olan ve hüküm süren skolastik düşüncenin temeli Yunanistan'da atılmış ve İtalya'da geliştirilmiştir. Bu nedenle de uzun yıllar bu skolastik düşünce yenilememiştir. Bu uğurda çok sayıda ilim adamı yok edilmiştir. Pisagor'dan önce, geometride, şekillerin aralarındaki bağlılıklar gösterilmeksizin elde edilenler, görenek ve tecrübeye dayanan bir takım kurallardı. Bu nedenle, daha gelen bir yetkili ne demişse o sürüp gidiyordu. Pisagor'un matematiğe ispat fikrini sokması bu yüzden çok önemlidir. O çağlarda çok tanrılı din vardı. Pisagor daha da ileri gidiyor ve "tanrı sayıdır" diyordu. Bu sayılar, 1, 2, 3..., şeklinde bugün bildiğimiz doğal sayılardı. Daha sonra, kendi kendine bir çelişkiye düştüğünü, tamsayıların hatta rasyonel sayıların bile matematiğe yetmediğini, kendi adıyla anılan Pisagor teoremiyle gördü. Buna bir süre karşı da çıktı. Fakat, sonunda bu yenilgiyi kabul etmesini de bilmiştir. Olayda karekök 2 şeklinde rasyonel bir uzunluğun olmaması problemidir. Halbuki Pisagor teoremine göre böyle bir uzunluk vardır. Pisagor'un kuramını yıkan problem, a2=2b2 denklemini gerçekleyen a ve b gibi iki tamsayıyı bulmak olanaksızdır. Pisagor'un karşılaştığı ikinci güçlük, bir karenin kenarının köşegenine bölümünün rasyonel bir sayı olmayışıdır. Bu söylediğimiz, a2=2b2 denkleminde adı geçen olaya eşdeğer olduğu açıktır. Bu problemi bugünkü matematik diliyle söylersek, karekök 2 sayısı irrasyonel bir sayıdır. İşte, karenin köşegeni gibi basit bir uzunluk, Pisagor'un doğal sayılar kümesine meydan okuyarak, Pisagor'un ilk felsefe kuramını yalanlamıştır. Böylece, hiç bir zaman tekrar etmeyen sonsuz ondalıklı olan irrasyonel sayı bulunmuş olunur. Pisagor'un bu buluşu, modern analizin kökünü keşfetmiştir. Bu problem bir yerde, sıfır ile iki sayısı arasını rasyonel sayılarla kaplayabilir miyiz sorusunu doğurur. Yanıt hemen hayır olacaktır. Çünkü, 0
| |
| | | iSyAnBuL Admin
Mesaj Sayısı : 3514 NeRdEn : G.o.Paşa mEsLeK : Radyo DJ-Öğrenci HoBi : -TaeKWondO-TrAiNiNg- Kayıt tarihi : 28/09/07
| Konu: Geri: MATEMATİKÇİLER 24.01.08 14:47 | |
| yayınlıyosun da bi de oku... | |
| | | TÜRK Moderatör
Mesaj Sayısı : 165 Yaş : 31 NeRdEn : GoP HoBi : futbol Kayıt tarihi : 26/12/07
| Konu: Geri: MATEMATİKÇİLER 27.01.08 14:01 | |
| | |
| | | | MATEMATİKÇİLER | |
|
| Bu forumun müsaadesi var: | Bu forumdaki mesajlara cevap veremezsiniz
| |
| |
| |
|